

FILMTEC™ Membranes

8" Semiconductor Grade Reverse Osmosis Elements

Features Ultrapure water specifications and analytical measurement capabilities have advanced to meet the exacting needs of microprocessor, semiconductor and other silicon based device manufacturers.

FILMTEC[™] SG30-400/34*i* and SG30LE-440*i* reverse osmosis elements have been developed to meet the requirements of higher overall rejection, higher rejection of lower molecular weight organic compounds and silica and an accelerated TOC rinse down profile. These high surface area elements allow for system design with fewer elements and a lower applied operating pressure, thus optimizing amortization of capital costs while lowering operating cost.

Both elements now come with the unique $i LEC^{TM}$ interlocking endcaps that reduce system operating costs, reduce the risk of o-ring leaks and the generation of small particles that lead to poor water quality, and eliminate the need for lubricants. See form No. 609-00446 for more information on the benefits of i LEC interlocking endcaps.

SG30-400/34*i* is intended primarily for polishing use in traditional UPW systems designed for higher pressure operation. It features a 34 mil spacer to lessen the impact of fouling and pressure drop across a vessel, increasing running time between cleaning and enhancing cleaning effectiveness.

SG30LE-440*i* is intended primarily for polishing use in newer UPW equipment where the benefits of lower capital cost and lower energy consumption add value.

Product Specifications

		Active Area	Permeate Flow Rate
Product	Part Number	ft² (m²)	gpd (m ³ /d)
SG30-400/34 <i>i</i>	272569	400 (37)	10,200 ¹ (38.6)
SG30LE-440 <i>i</i>	272573	440 (41)	10,0002 (38)

1. Pure water flow based on the following conditions: 225 psi (1.55 MPa), 77°F (25°C) and 15% recovery.

2. Pure water flow based on the following conditions: 107 psi (0.74 MPa), 77°F (25°C) and 15% recovery.

3. Flow rates for individual elements may vary but will be not more than 15% below the value shown.

4. Product specifications may vary slightly as improvements are implemented.

5. Typical stabilized salt rejection (Cl-) for individual element is 99.5% under the test conditions of 2,000 ppm NaCl, 225 psi (1.55 MPa) for SG30-400/34*i* and 150 psi (1.03 MPa) for SG30LE-440*i*, 77°F (25°C), pH 8 and 15% recovery. At lower TDS (<5 ppm), ion rejections are decreased depending on ionic strength, pH and ionic species.

Figure 1	B	
D DIA Feed	Fiberglass C	Duter Wrap End Cap Brine Permeate

	Maximum Feed Flow Rate	Typical Recovery Rate	Dimensions – Inches (mm)			
Product	gpm (m³/h)	(%)	Α	В	С	D
SG30-400/34 <i>i</i>	85 (19)	15	40.0 (1,016)	40.5 (1,029)	7.9 (201)	1.125 ID (29)
SG30LE-440 <i>i</i>	85 (19)	15	40.0 (1,016)	40.5 (1,029)	7.9 (201)	1.125 ID (29)

1. Typical recovery rate shown is for a single element. Recovery rate is calculated by dividing permeate flow rate by feed flow rate. 1 inch = 25.4 mm

2. Refer to FilmTec Design Guidelines for multiple-element systems.

3. SG30-400/34 and SG30LE-440 elements fit nominal 8.0-inch (203 mm) I.D. pressure vessel.

4. SG30LE-440; now has an industry standard 1.125-inch I.D. permeate tube. If required, SG30LE-440; can be connected in series with the old SG30LE-430 (1.5-inch I.D. tube) using interconnector part number 196309.

Operating Limits	 Membrane Type Maximum Operating Temperature Maximum Operating Pressure Maximum Differential Pressure pH Range, Continuous Operation^a pH Range, Short-Term Cleaning (30 min.)^b Maximum Feed Silt Density Index Free Chlorine Tolerance^c Maximum temperature for continuous operation above pH 10 is 95°F Refer to Cleaning Guidelines in specification sheet 609-23010. Under certain conditions, the presence of free chlorine and other oxid oxidation damage is not covered under warranty, FilmTec recommen membrane exposure. Please refer to technical bulletin 609-02034 for 		re on ^a g (30 min.) ^b ex tion above pH 10 is 95°F (35°C). sheet 609-23010. e chlorine and other oxidizing ag anty, FilmTec recommends remo cal bulletin 609-02034 for more in	ing agents will cause premature membrane failure. Since removing residual free chlorine by pretreatment prior to	
Organic Rejection Data	Rejection data for or Table 1. Typical or				
	Organic compound	MW .	Rejection (%) SG30	-400/34 <i>i</i> 1	Rejection (%) SG30LE-440i ²
	Methanol	32	14		13
	Ethanol	46	50		40
	Acetone	58	68		48
	Isopropanol	60	95		92
			l4 psi (1.47 MPa), 25°C, pH 7 and ⁻)7 psi (0.74 MPa), 25°C, pH 7 and ⁻		
Important Information	membranes for oper hydraulic shock. Fo parameters conform can be achieved. Before initiating syst elements, instrumen	ating service an llowing the prop to design speci em start-up proo t calibration and pplication inform	fications so that system cedures, membrane pre l other system checks s	e damage du so helps ens n water quali etreatment, l hould be co	ue to overfeeding or sure that system operating ity and productivity goals oading of the membrane
Operation Guidelines	 shutdown, cleaning a gradual change fro Feed pressure sh Cross-flow veloci 	or other sequen om a standstill to ould be increas ty at set operati	o operating state is reco ed gradually over a 30-0	membrane mmended a 60 second ti eved gradua	damage. During start-up, as follows: ime frame. ally over 15-20 seconds.
General Information	 If operating limits warranty will be n To prevent biolog membrane eleme The customer is f elements. Maximum pressu Avoid static perm Notice: The use of this prod cyst and pathogen reduction Notice: No freedom from an from one location to another in this document are approp compliance with applicable 	and guidelines ull and void. ical growth durin ints be immerse iully responsible re drop across a eate-side backp uct in and of itself doe is dependent on the c up patent owned by Se and may change with riate for Customer's us aws and other governn ES ARE GIVEN; ALL II	an entire pressure vesse pressure at all times. Is not necessarily guarantee the r complete system design and on the ller or others is to be inferred. Be time, Customer is responsible for see and for ensuring that Custome mental enactments. Seller assum	nutdowns, it tion. patible cher el (housing) removal of cysts he operation and ecause use condi or determining wh ar's workplace an es no obligation	is recommended that micals and lubricants on is 50 psi (0.34 MPa). and pathogens from water. Effective I maintenance of the system. itions and applicable laws may differ nether products and the information

